
50%
SALE
FRIDAY
BLACK

PHIPPY’S QUEST FOR CLOUD 
NATIVE TRANSFORMATION



50%
SALE
FRIDAY
BLACK

Captain, I really need to prepare for this coming Black Friday sale. Being the 
Engg VP, I need to make sure we are always available and fault-tolerant. The 
last time, we had an outage, and we barely managed to band-aid it on time, 
but we might not be lucky enough this time.

Oh, man, that sounds scary!



50%
SALE
FRIDAY
BLACK

I am trying to move towards adopting the cloud native principles, but I am 
sort of lost with all the tools and the prescriptions that are out there. Coming 
from a very legacy background, I find the landscape is huge and overwhelm-
ing. I am not sure where to start and what would work for me.

I see. Yes, this is something that I would love to help you with. 
From what I understand and the way you described it, this is 
going to be an extensive and exciting transformation for you. 

But do not worry; we will get there, Phippy.



Hmm, I think you should consider fully automating 
them. Use CI/CD practices for faster feedback during 
the build and then automate the deployment.

Well, to begin with, how do you deploy 
your applications?

This sounds interesting, tell me more!

Manual work

WAR ROOM

Currently, we run shell scripts that update our 
applications on the servers. Some application updates 
are semi-automated with a few manual items.



Automated Deployment

Yes, that’s a great point.

Manage infrastructure configuration changes in source control 
by having a way of automating change to your infrastructure. 
The source of truth should be your code repository. 

To get all that in place, the tools and systems that are being used 
need to be automatable. They need to adhere to standard formats 
and interfaces by using which machines can talk to them.

While choosing the tools or building them, you can make sure 
those tools support standard specifications & interfaces.

I see. Let me look at the tools and plat-
forms we have, and we will go from there.



To handle a sudden traffic spike, we tried to scale 
out the application by increasing the number of 
instances. And the whole site started having issues.

Users were having issues with the cart. If they 
refresh the page, cart items were getting vanished.

Another thing Captain, how do you build in resiliency?

Whoaaa! What was the issue, Phippy?



I see. It seems more like an application problem but let me 
ask you this: Do you store the cart information in memory 
of the application?

Ummmm, yeah, we do that. We realized that it is not a great 
practice unless we use a dedicated caching component.

That's right. Ideally, you should not store any state data at 
places like memory. Using some backing service like a caching 
component is a way to go.

What about microservices? Do I need to go through this exercise of 
building services for this giant monolithic application? Would it 
make it more resilient and scalable???

Basically, it will make your application scalable as it becomes 
stateless. Any instance of the application can serve the user 
request in that case.



Well, it won't be a silver bullet; but, building services that perform a function of 
the entire application and making them individual deployable units would 
undoubtedly allow you to scale. Failure of the reporting service might still 
enable your application to function, albeit in a degraded state. 

Interesting, Captain! But then the backing database will still 
be stateful and thus not a cloud native system, right?

Aye, Captain!

But, it is a complicated exercise. More components mean more chattiness, 
lesser of them meaning inefficient scale-out. So, the choice between them 
really is where you understand your user persona and do a domain decompo-
sition of the application at hand. 

Well, yes, and no. Legacy databases that are not cluster-aware 
or cannot be scaled out are on the edge of being called not 
cloud native, but there is a lot of innovation in that space. 
Cloud native storage solutions could help a bit in that case.



Another issue that’s bugging me is that my infrastructure is 
tightly coupled with deployment. We had this issue last time, 
where something worked on lower environments but failed 
in the pre-production environment.

I see. Yes, I think moving towards the microservices architecture 
would allow you to containerize the applications, and they 
would run on most underlying machines without much variance.



It would also make the application more flexible since it 
would not depend on the underlying infrastructure. You 
could adopt Kubernetes as the container orchestrator 
and make your deployment a desired state specification.

I see. Yes, that would be the 
way to move forward.



Hmmm, but you would want to do it dynamically 
to optimize costs. You can set up a threshold and 
scale-out if you breach it. Say, if the number of 
requests per second is more than 100,000 or 
200,000, scale the application instances.

On the same note, how are you going to make sure 
your application stays available during this sudden 
traffic surge due to the sale?

What do you mean? I have already added 
additional capacity to anticipate this.



M T W T F S S

Lo
ad

Capacity

So how do we do it?

Cool, that sounds interesting. Let me talk to the 
team, and then I would be able to decide how we 
can implement these best practices to become 
cloud native.

It’s simple, so there is this concept of Pod and Cluster 
autoscaling in Kubernetes, where you can achieve this 
very easily. You can configure custom metrics as well.

Yupp.



Microservices

Apps

Infrastructure/OS

Now that you have at least an idea in the movement 
towards cloud native, I think you should also make 
sure your application services are observable. 

But, wouldn’t resource requests such as CPU 
and memory utilization help with that?

Yes, they would to a certain extent but say, e.g., 
emitting the number of messages piled up in the 
queue above a certain threshold can help you decide 
to scale out the receivers.

I see, go on.

Make sure you create these services emit metrics 
based on which you can scale them up/down.



Event Timeline

Microservices

Apps

Infrastructure/OS

Ah, ha! I see. Yes, that's correct.

Also, make sure that you build out a strong SRE practice of focusing 
on the availability of the application as a foundational principle. 
Adopt practices such as Service Level Objectives (SLOs), error bud-
gets, and blameless postmortems.

Yes, I know! This is a lot, but the benefits are worth it.

You could alert based on these metrics or trigger off 
automation pipelines that address those alerts.

Agreed. Ah, this is a lot to move towards cloud native. But, I 
think this was a great discussion.

True. Whom should I reach out if I face any problems 
while doing this transformation?

Good folks from InfraCloud would be more than 
happy to help you out.



Begin your cloud native journey with InfraCloud
Interested in diving into what Phippy did and learning 

more about the cloud native transformation?

Talk to an Expert

The concept and dialouges of “Phippy’s Quest for Cloud Native Transformation” is copyright InfraCloud Technologies Inc. and is licensed under Creative 
Commons Attribution 4.0 International (CC-BY-4.0).

The topics on which this comic book is based on are from the book “Cloud Native DevOps with Kubernetes” by John Arundel & Justin Domingus.
The illustration of Goldie is based on the Go Gopher designed by Renée French and is licensed under Creative Commons Attribution 3.0 (CC-BY-3.0).

Phippy and Captain Kube are copyright The Linux Foundation, on behalf of the Cloud Native Computing Foundation. They are licensed under Creative 
Commons Attribution 4.0 International (CC-BY-4.0). See phippy.io.

Kubernetes®, CNI™ and CSI along with their logos are trademarks of The Linux Foundation. See linuxfoundation.org.
Other illustrations are by macrovector / macrovector_official / pch.vector / pikisuperstar / rawpixel.com / vectorjuice / Freepik. These are licensed under Freepik 

Licence. See freepik.com.

http://www.infracloud.io/contact-us/

